

Asynchronous Ballistic Reversible Fluxon Logic

Michael P. Frank, Rupert M. Lewis, Nancy A. Missert, Matthäus A. Wolak, and Michael D. Henry

I. Motivation

- Cost-effective high-performance computing (HPC) requires high *computational energy efficiency*, at any given device performance level, in datacenter (room-temperature) settings.
- Existing SCE logic technologies are <u>not</u> <u>competitive</u> by such energy-delay metrics after accounting for specific power consumption of cryo-coolers.

- Improving computational energy efficiency requires approaching the ideal of *reversible computing*, but existing adiabatic approaches for reversible logic in SCE (PQ, nSQUIDs, RQFP) impose substantial clocking-related overheads.
 - High-efficiency clock generation, distribution, and energy recovery is a difficult engineering challenge!
- <u>Problem Statement:</u> Investigate whether/how reversible computing can alternatively be implemented in SCE without externally-driven adiabatic transitions

II. Previous work

- Frank '17 introduced Asynchronous Ballistic Reversible Computing (ABRC), the first general theoretical circuit model of unclocked, universal reversible computation.
 - Data pulses propagate ballistically and asynchronously between devices
 - And elastically scatter off devices
 - Local device state updates reversibly on pulse arrival
- Research Question: Can the abstract ABRC model be implemented using ballisticallypropagating flux quanta (fluxons) as the signal pulses, and stationary (but mutable) trapped fluxons to register the internal device state?
 - While dissipating much less than the fluxon energy per scattering/state-update event?

III. Ballistic interconnects

- Two well-studied methods to propagate fluxons near-ballistically along passive interconnects:
 - Microstrip (or similar) passive transmission lines (PTLs)
 - Support fast pulse propagation velocities
 - Long Josephson junctions (LJJs)
 - Support a soliton propagation mode
 - · Described by the sine-Gordon equation
 - · Can be continuous, or discretized (dLJJ)
- Our initial investigation is focusing on dLJJ interconnects for simplicity of modeling
 - Can be implemented in available Nb processes
 - E.g., Hypres S#45/100/200
- Example parameters for dLJJ unit cell:

Parameter description	Sym- bol	Value	Units
Junction critical current density	$J_{\rm c}$	1	μΑ/μm²
Unit Josephson junction area	A	1.5	μm^2
Unit JJ critical current	$I_{\rm c}$	1.5	μA
Round JJ diameter	d	1.38	μm
Intrinsic JJ (shunt) capacitance	$C_{\rm J}$	60	fF
JJ intrinsic inductance	$L_{\rm J}(0)$	220	pН
JJ plasma frequency	ω_{J}	44	GHz
Drawn cell inductance	L	31.38	pН

XIC schematic for dLJJ unit cell:

• JJ model in XIC's model.lib file:

- A simple test bench for dLJJ simulation in XIC
 - DC-SFQ converter is from the SUNY RSFQ library

Sandia National Laboratories

CD

(AND from toggling switch gate)

IV. Impedance modeling of dLJJ

• Circuit equivalence for calculating small-signal impedance of a semi-infinite string of dLJJ cells:

• Recurrence relation corresponding to diagram:

$$Z_{LJJ} = 2Z_L + \frac{1}{\frac{1}{Z_{JJ}} + \frac{1}{2Z_L + Z_{LJJ}}}$$
 (1)

• Solving eq. (1) for line impedance Z_{LII} gives us:

$$Z_{LJJ} = 2\sqrt{Z_L(Z_L + Z_{JJ})}$$
 (2)

• Small-signal impedance Z_{IJ} of each JJ is given by:

$$\frac{1}{Z_{II}} = \frac{1}{Z_{IL}} + \frac{1}{Z_{IC}} \tag{3}$$

where:

$$Z_{JL} = j\omega L_{JJ}(0), \qquad Z_{JC} = -\frac{j}{\omega C_{JJ}}$$
 (4)

and

$$L_{\rm JJ}(0) = \frac{\Phi_0}{2\pi I_{\rm c}} \tag{5}$$

is the JJ intrinsic inductance $L_{\rm JJ}(\varphi)$ for $\varphi \to 0$.

• Plotting $Z_{\text{LJJ}}(\omega)$ vs. approx. pulse width $\tau = \pi/\omega$:

V. WRSPICE simulations of dLJJ

- For different values of the terminating resistor *R*:
 - 1. $R = 0 \Omega$ (closed-circuit termination; flux conserved)
 - 2. $R = 16 \Omega = Z_{LJJ}$ for $\tau = 20$ ps wide pulses
 - 3. $R = 1 \text{ G}\Omega$ (open-circuit termination; flux reverses)

- Note we observe a well-defined flux soliton
 - Pulse duration = 20 ps, width = 10.5 dLJJ cells
 - Traverses one dLJJ unit cell every 1.9 ps
 - At 1 pH/ μ m line inductance, $v \approx c/36$
 - Could probably be increased if desired

VI. Conservation/Symmetry Constraints

 Without considering these, the number of possible ABRC functions with polarized I/O pulses and states would be unmanageable:

No. of I/O Ports	Number of I/O Syndromes	Number of Fully Reversible Functions
1	6	6! = 720
2	12	12! = 479,001,600
3	18	18! = 6,402,373,705,728,000
4	24	24! = 620,448,401,733,239,439,360,000

- But: A planar circuit with a closed superconducting boundary conserves net flux threading the boundary
 - · Due to Meissner-effect flux trapping
- And: Any circuit with only inductors, capacitors, and JJs is time-reversal symmetric
 - Dynamics is identical if all currents & fields reversed
- Such constraints limit the number of implementable 1-3 port ABRC functions to a relatively small subset, which will be detailed in future work
 - Example: The only non-trivial 1-port operation is *Swap*, which exchanges external & internal fluxons, and acts as a reversible memory.

Input Syndrome		Output Syndrome
+1(+1) +1(-1) -1(+1) -1(-1)	\rightarrow \rightarrow \rightarrow	(+1)+1 (+1) -1 (-1)+1 (-1)-1

VII. Conclusion

 Preparatory work on this project is complete, and we are now ready to begin detailed design work to find JJ circuits that implement useful ABRC functions.

Sandia National Laboratories